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K nowledge of aberrant protein expression pat-
terns can be employed toward predicting out-
comes to conventional therapy and aid in the

development of individualized treatment (1). This is par-
ticularly evident in the treatment of breast cancer in
which the expression of estrogen, progesterone, and hu-
man epidermal growth factor receptor 2 (HER2) is used
to stratify patients and guide the administration of both
chemical and biological therapeutic agents (2). Taking a
broader view, the interactions of cell surface receptors
with their ligands play an important role in almost all vi-
ral infection as well as the initiation of signaling cas-
cades. For example, the interaction of the gp120 coat
protein of HIV-1 with the CD4 receptor of T-lymphocytes
leads to infection (3), while the interaction of the vascu-
lar endothelial growth factor (VEGF) with its receptor
Flt-1 leads to angiogenesis, thereby potentiating tumor
growth (4). Consequently, simple and rapid methods for
the direct detection of cellular receptors are desirable.

Elegant strategies for labeling and detecting native
proteins in biological settings have been described;
however, many of these methods are encumbered by
the inherent requirement for separation or chemical la-
beling (5). Current approaches often rely on chemical or
biological derivatization and subsequent analysis by mi-
croscopy or fluorescence-activated cell sorting (FACS)
(6). Alternatively, the classic enzyme-linked immunosor-
bent assay (ELISA) (7, 8) can be used to detect almost
any analyte but requires that either the antigen or anti-
body is captured on a solid support prior to detection,
followed by vigorous washing and subsequent recogni-
tion by an enzyme�secondary-antibody conjugate. This
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ABSTRACT The direct detection of native proteins in heterogeneous solutions re-
mains a challenging problem. Standard methodologies rely on a separation step
to circumvent nonspecific signal generation. We hypothesized that a simple and
general method for the detection of native proteins in solution could be achieved
through ternary complexation, where the conditional signal generation afforded by
split-protein reporters could be married to the specificity afforded by either native
receptors or specific antibodies. Toward this goal, we describe a solution phase
split-luciferase assay for native protein detection, where we fused fragmented
halves of firefly luciferase to separate receptor fragments or single-chain antibod-
ies, allowing for conditional luciferase complementation in the presence of several
biologically significant protein targets. To demonstrate the utility of this strategy,
we have developed and validated assay platforms for the vascular endothelial
growth factor, the gp120 coat protein from HIV-1, and the human epidermal growth
factor receptor 2 (HER2), a marker for breast cancer. The specificities of the recogni-
tion elements, CD4 and the 17b single-chain antibody, employed in the gp120 sen-
sor allowed us to parse gp120s from different clades. Our rationally designed HER2
sensing platform was capable of discriminating between HER2 expression levels in
several tumor cell lines. In addition, luminescence from reassembled luciferase was
linear across a panel of cell lines with increasing HER2 expression. We envision
that the proof of principle studies presented herein may allow for the potential de-
tection of a broad range of biological analytes utilizing ternary split-protein systems.
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limits the utility of the ELISA for the direct detection of
native proteins in complex heterogeneous fluids, such
as blood or lysates. We note that techniques such as
time-resolved fluorescence that exploit the long fluores-
cence lifetime of lanthanides such as Eu3� also provide
sensitive methods for protein detection that avoid com-
plications associated with biological autofluorescence
(9, 10). Ideally one could envision a one-step solution
phase sandwich approach in which the activity of an at-
tached split-protein reporter would depend solely upon
formation of a ternary complex (Figure 1). Such a general
methodology would potentially allow for the direct de-
tection of any protein in complex environments without
the need for immobilization, direct chemical derivatiza-
tion, or separation.

Central to the strategy proposed above is the use of
split-protein reassembly or protein complementation,
which relies on a specific bimolecular interaction to
drive reassembly of a fragmented reporter protein (11,
12). Johnsson and Varshavsky were the first to demon-
strate this approach using split-ubiquitin (13), which
has subsequently been applied to a variety of mono-
meric reporter proteins including dihydrofolate reduc-
tase (DHFR) (14), �-lactamase (15), GFP (16−18), Re-
nilla luciferase (19), Gaussia luciferase (20), firefly
luciferase (21), Trp1p (22), TEV protease (23), and most
recently, chorismate mutase (24). This enabling prin-
ciple for the detection of bimolecular interactions has
been used to delineate the yeast protein interactome
(25) and could potentially lead to novel treatments for
cancer (26). We have utilized this approach for the di-
rect detection of DNA through ternary complexation

(27−29), which was also utilized for the site-specific
methylation of DNA (30). We sought to make use of the
ternary complexation principle to develop a conditional
detection platform for native extracellular proteins in
heterogeneous solutions utilizing receptor fragments
and antibodies as specific recognition elements.

Toward this long-term goal, we recently described a
general cell-free split-protein assay for directly measur-
ing heterodimeric protein�protein interactions (31). We
identified a fragmented luciferase (32), discovered by
Luker et al. through the incremental truncation approach
(33), as a very sensitive protein complementation plat-
form adaptable to a cell-free system (34, 35). Herein we
adapt the cell-free split-luciferase methodology to pro-
vide a simple and potentially general solution for the
rapid and direct detection of clinically relevant proteins,
including growth factors as well as viral- and cell-surface
receptors.

RESULTS AND DISCUSSION
A Cell-Free Split-Luciferase System for VEGF

Detection. As a first test of ternary complexation, we
set out to determine if a dimeric receptor fragment could
be utilized to detect its extracellular ligand. We chose
to target dimeric VEGF, implicated in tumor angiogen-
esis, which binds its extracellular receptor Flt-1 in a 1:2
stoichiometry with a reported Kd of 1.4 nM (36). We next
attached the N- and C-terminal halves of luciferase (resi-
dues 2�416 and 398�550, respectively) to separate
Flt-1 domain 2 fragments (Figure 2, panel A) with the ex-
pectation that a statistical distribution of Flt-1-luciferase
halves bound to the VEGF dimer would still permit

Figure 1. General schematic for ternary complexation mediated protein complementation is shown. mRNA encoding
for split-luciferase fusions is used to initiate translation in a cell-free protein expression system. Specific recognition
elements fused to the luciferase halves are used to reassemble a functional enzyme in the presence of a protein of in-
terest leading to the generation of light. Translation, reassembly, and detection take place in the same solution.

944 VOL.5 NO.10 • 943–952 • 2010 www.acschemicalbiology.orgSTAINS ET AL.

http://pubs.acs.org/action/showImage?doi=10.1021/cb100143m&iName=master.img-000.jpg&w=394&h=128


�50% split-luciferase complementation. Expression of
the split luciferase-Flt-1 fusion proteins in rabbit reticu-
locyte lysate led to an increase in luminescence of �13-
fold only in the presence of 15 nM VEGF dimer, clearly
demonstrating the ability to use receptor fragments to
detect their ligands in this system (Figure 2, panel B).
This detection system could potentially provide a means
for high-throughput screening of molecules capable of
disrupting the interaction of VEGF with its receptor (4).
To further confirm the interaction between VEGF and
Flt-1, we recombinantly expressed soluble fragments of
these proteins (Supplementary Figure S1) and demon-
strated a 1:2 binding interaction between the VEGF

dimer and Flt-1 by gel filtration (Supplementary Figures
S2 and S3). We additionally determined the limit of
VEGF dimer detection by performing a titration, demon-
strating detection of 500 pM (690 ng) VEGF dimer above
two standard deviations from the average background
signal (Figure 2, panel C). To demonstrate reversibility of
VEGF/Flt-1 dependent split-luciferase reassembly, we
sought to compete for VEGF binding by adding free Flt-1
in trans (Figure 2, panel D). Titration of a solution con-
taining 15 nM VEGF dimer with free Flt-1 resulted in an
IC50 of 56 � 8 nM. We note that the concentration of the
sensor components in the system are not known, and
thus this approach provides information on relative

Figure 2. Ternary complexation mediated direct detection system for the vascular endothelial growth fac-
tor (VEGF). A) A schematic of the VEGF assay is shown, where domain 2 of Flt-1 (red and blue) is attached
to both the N- and C-terminal halves of luciferase to directly detect the VEGF homodimer. B) Luminescence
from reassembled luciferase in the presence and absence of VEGF, total assay time of 2.5 h starting from
mRNA. A �13-fold increase in luminescence is observed in the presence of 15 nM VEGF dimer. C) A titra-
tion of VEGF dimer was performed, resulting in a linear relationship to luminescence output. D) A titration
of free Flt-1 was used to compete with luciferase reassembly, resulting in an IC50 of 56 � 8 nM. ALU, arbi-
trary luminescence units.

ARTICLE

www.acschemicalbiology.org VOL.5 NO.10 • 943–952 • 2010 945

http://pubs.acs.org/action/showImage?doi=10.1021/cb100143m&iName=master.img-001.jpg&w=355&h=312


binding constants rather than absolute equilibrium con-
stants as is the case with fluorescence polarization or
surface plasmon resonance. Finally, we tested whether
the split-luciferase assay platform is compatible with the
use of cell lysis reagents and protease inhibitors that
may be present in certain samples and found that the lu-
minescence signal was not significantly diminished
(Supplementary Figure S4). Importantly, these initial ex-
periments with VEGF and Flt-1 established feasibility for
our direct ternary complexation strategy, prompting us
to further investigate the use of more general recogni-
tion scaffolds such as antibodies.

Rapid Characterization of HIV-1 Clades. As our first
test of antibody mediated detection, we sought to pro-
vide a rapid and sensitive method for detecting HIV-1
based on antibody specificities. Accordingly we investi-
gated strategies for incorporating antibodies into split-
protein reassembly assays. In efforts to generate anti-
bodies from randomized libraries, the Plückthun
laboratory demonstrated that split-DHFR could be reas-
sembled in bacterial cells by attaching a protein of inter-
est and the corresponding single-chain antibody (scFv),
a covalent fusion of the variable heavy and light chains
(37−39), to individual DHFR halves (40). Interaction de-
pendent reassembly of the functional DHFR enzyme led
to cell survival. Despite its appeal, the intracellular ex-
pression of functional scFvs remains challenging (41,

42). Alternatively, conditions for efficient scFv expres-
sion and refolding in cell-free translation systems
supplemented with protein disulfide isomerase (PDI)
have been described (43). With this in mind, we set out
to develop an antibody mediated split-luciferase assay
for the potential detection of HIV-1.

The crystal structure of the complex between CD4,
gp120, and the Fab portion of a neutralizing antibody
17b (3), which has a high affinity for Clade B BaL gp120
(44), served as a model system for the development of
our gp120 sandwich assay (Figure 3, panel A). We fused
domain 1 and 2 (D1D2, residues 1�182) of CD4, which
has been shown to bind to gp120 with a Kd of �3 nM
(45), to the N-terminal half of luciferase. As our second
recognition element, we fused the C-terminal half of lu-
ciferase to the 17b scFv, which binds a CD4-induced
epitope of gp120 (3, 44) (Figure 3, panel A). In accor-
dance with previous literature results, initial experi-
ments showed a negligible increase in luminescence
for translations conducted in the presence of 20 nM BaL

gp120 (Supplementary Figure S5), presumably due to
improper folding of the 17b scFv (43). However, the
elimination of DTT and addition of PDI allowed for lumi-
nescence and the first functional demonstration of anti-
body mediated targeting in the split-luciferase system
(Figure 3, panel B). Moreover, luminescence signal was
detectable without the need for separation, washing, or
subsequent derivatization.

Having established conditions for favorable protein
folding, we sought to verify the specificity of our gp120
assay. Accordingly, we first investigated luciferase reas-
sembly in the presence of different BaL gp120s contain-
ing single amino acid mutations, D368R and I420R,
which are known to reduce either CD4 (46) or 17b (47)
binding, respectively. Indeed these mutant gp120s con-
siderably reduce luminescence relative to the wild-
type, confirming that both functional CD4 and 17b bind-
ing are required for luciferase reassembly (Figure 4,
panel A). We also interrogated split-luciferase activity
as a function of gp120 concentration (Supplementary
Figure S6), demonstrating that our assay system is ca-
pable of reporting on the presence of at least 12 ng mL�1

of BaL gp120, which is comparable to commercially
available gp120 ELISAs and is likely a function of anti-
body/D1D2 affinities. This titration experiment also indi-
cated that �5 nM of active complex (folding capable
split-halves) is translated utilizing our current cell-free
conditions.

Figure 3. Antibody enabled split-luciferase assay for direct detection of gp120. A) A
schematic of the solution phase detection system for gp120 is shown. B) The
specificity of the solution phase gp120 detection system is shown, emphasizing
the luminescence signal generated from the assay when either DTT or PDI is in-
cluded during translation. ALU, arbitrary luminescence units. DTT, dithiothreitol.
PDI, protein disulfide isomerase.
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To use our sandwich assay for the potential character-
ization of HIV-1 clades, we investigated gp120s from
isolates CN54 and 96ZM651, both of which are clade C
viruses. Maximal luciferase signal was observed only in
the presence of BaL gp120 (clade B), while a slight in-
crease in luminescence was observed for CN54 gp120,
and no detectable signal was generated for 96ZM651
gp120 (Figure 4, panel B). This highlights the potential
feasibility of this complexation approach for providing a
method for distinguishing HIV-1 clades and subtypes
using known antibody specificities without the need for
DNA sequencing. In the long term, to accurately profile
HIV-1, a panel of known gp120 antibodies with prede-
termined specificities is necessary that can be attached
to the two halves of luciferase (44, 48). An unknown
sample would be interrogated against the split-
luciferase panel to potentially determine the specific
HIV-1 clade.

Probing HER2 Expression in Human Breast Cancer
Cells. Having identified suitable expression conditions
for using scFvs in our split-luciferase system, we turned
to establishing whether this assay can be utilized for the
determination of the relative levels of cell surface pro-
teins present in human cells. This is particularly relevant
to breast cancer treatment where the expression of es-
trogen receptors, progesterone receptors, and HER2 in
tumors is used to stratify patients and guide treatment
strategies (2). Therefore we chose to develop a general
method for detecting extracellular receptors using scFvs
as protein recognition elements. Specifically we chose
the extracellular domain (ECD, residues 1�631) of
HER2, which is overexpressed in �30% of human
breast cancers and is directly correlated with poor clini-
cal outcomes. Genentech has described two antibodies,
Herceptin and Omnitarg, which bind distinct epitopes
of the HER2 ECD. Overlaying the crystal structures of
these bound antibodies indicates that they are likely ca-
pable of binding HER2 simultaneously (49, 50). More-
over the reported binding constants for an scFv version
of Herceptin and the Fab portion of Omnitarg for the
HER2 ECD are 150 pM (51) and 8.5 nM (52), respec-
tively, which is well within our assay’s detection limits.
Thus we constructed mRNAs in which the scFv of Omni-
targ was fused to the N-terminal portion of luciferase
and the C-terminal portion of luciferase was fused to the
scFv of Herceptin (Figure 5, panel A). As an initial test
of the HER2 sandwich assay, the HER2 ECD was ex-
pressed, purified, and added at varying concentrations

to the two split-luciferase scFv fusions after translation
in rabbit reticulocyte lysate. Within 30 min a
concentration-dependent increase in luminescence in
the presence of the HER2 ECD was observed (Figure 5,
panel B), indicating that this new antibody enabled
sandwich assay was indeed capable of reporting on

Figure 4. Antibody enabled split-luciferase assay for direct detection of gp120 and
verification of clades. A) The specificity of the solution phase gp120 detection sys-
tem is shown. Assays were performed on the indicated wild-type or mutant gp120s;
D368R and I420R mutations are known to decrease CD4 or 17b binding respec-
tively (46, 47). B) The specificity of the antibody mediated gp120 detection system,
as determined by luciferase reassembly, across a panel of gp120s from the indi-
cated clades is shown. The observed luminescence highlights the potential ability
to rapidly categorize HIV-1 clades using scFv-based split-luciferase complementa-
tion. ALU, arbitrary luminescence units.

Figure 5. Dual antibody mediated split-luciferase sandwich assay for the direct de-
tection of purified human epidermal growth factor receptor 2 (HER2). A) An overlay
of HER2 (tan and light blue) with the bound luciferase fusion proteins is shown. B) A
HER2 sandwich assay was performed on purified HER2 expressed from Lec1 cells.
The inset shows a Western blot analysis of the purified HER2 protein, lane 1 molec-
ular weight standards and lane 2 purified HER2 protein. ALU, arbitrary lumines-
cence units.
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the presence of HER2 at subnanomolar levels. Prelimi-
nary experiments indicate that these cell-free transla-
tions can be stored at least 7 days at �80 °C prior to the
addition of HER2 (Supplementary Figure S7), poten-
tially allowing for the long-term storage of reagents and
the detection of clinically relevant analytes at the point
of care.

Finally we sought to determine if our assay could di-
rectly detect differential levels of expression of HER2 in
human breast cancer cells. We chose the SK-BR-3, BT-
474, and MCF7 cell lines, which have been shown to
produce approximately 1 � 106, 7 � 105, and 2.5 � 104

copies of HER2 per cell, respectively (53). Cells were
added directly to completed translation reactions and
incubated at RT for 40 min. In the presence of SK-BR-3
cells (2.5 � 104 cells, theoretically �400 pM HER2) a
13.7-fold increase in luminescence was observed with
respect to the MCF7 cells (2.5 � 104 cells, theoretically
�11 pM HER2), indicating that our sandwich assay is
capable of directly reporting on the differential expres-
sion levels of HER2 in human breast cancer cell lines
(Figure 6, panel A). Finally, in the presence of the BT-
474 cell line an intermediate signal was observed,
which was proportional to the theoretical amount of
HER2 in the assay, �280 pM. These combined trends
in luminescence signal directly correlated to the known
expression levels of HER2 in these cell lines (Figure 6,
panel B) (53). These results indicate that this rapid as-
say is capable of directly determining the relative ex-

pression levels of HER2 in human cells without the
need for separation or FACS analysis. Additional experi-
ments indicate that as few as 2,600 SK-BR-3 cells can be
detected using this assay format (Supplementary Fig-
ure S8). These results highlight the potential utility of
this assay platform for the rapid stratification of breast
cancer patients based on receptor expression.

CONCLUSIONS
We have demonstrated the feasibility of ternary protein
detection utilizing split-protein reassembly. Using this
approach, we initially attached the receptor fragments
of Flt-1 to the fragmented luciferase halves to detect
VEGF, which could potentially be applied to identify mol-
ecules with antiangiogenic properties. Our current sensi-
tivity for this assay is 690 ng of VEGF dimer, which is
on the same scale as physiological concentrations of
VEGF in the sera or effusions from cancer patients re-
ported to be as high as 50 ng mL�1 (54). In order to de-
velop a more general recognition strategy, we have suc-
cessfully employed single-chain antibodies as specific
recognition elements. This approach was validated uti-
lizing a single-chain antibody and a cellular receptor
fragment as targeting domains, which were utilized to
demonstrate the long-term potential for the character-
ization of HIV-1 clades by means of specific antibody-
gp120 mediated recognition panels. Finally, we ex-
tended this ternary approach for the determination of
the relative levels of HER2 in human breast cancer cells
using an entirely antibody-based recognition system.
This strategy requires the identification of dual recogni-
tion elements capable of simultaneously binding to the
target of interest, which may be generally accessible
through elegant methods for the evolution of antibody
fragments (55). We envision that this simple and poten-
tially general methodology will provide an approach for
the rapid detection of a broad range of native proteins in
complex heterogeneous systems, including blood and
tissues. Furthermore, this assay might be useful for
monitoring protein complex formation to follow aspects
of stem cell differentiation or cancer cell progression, uti-
lizing the unique cell-surface markers of stem cells that
can provide a handle for following mechanisms of pluri-
potency maintenance and lineage commitment (56).
The use of the firefly luciferase reporter with a broad lu-
minescence profile with a maximum at 560 nm (range
�500�650) is particularly attractive in a biological con-
text, considering that emission wavelengths greater

Figure 6. Dual antibody mediated split-luciferase sandwich assay for the direct de-
tection of human epidermal growth factor receptor 2 (HER2) in human breast cancer
cells. A) A HER2 sandwich assay was performed on human breast cancer cells. SK-
BR-3 or MCF7 cells were added after translation and luminescence was monitored
after 40 min (2.5 � 104 cells during luminescence assay). B) The luminescence signal
obtained from the HER2 sandwich assay correlates with literature values for HER2
expression in the corresponding cell lines (53). ALU, arbitrary luminescence units.
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than 600 nm are more easily transmitted through mam-
malian tissues (57, 58). However, a further red-shifted
luciferase variant, such as railroad worm luciferase with
a maximum emission at 630 nm, may prove even more
appropriate for biological imaging (59). More generally,

this ternary capture approach demonstrates the ability
to generate conditionally activated split-proteins de-
pendent upon native protein abundance, which may
be potentially redesigned for therapeutic or drug deliv-
ery applications.

METHODS
General Materials. Flexi-Rabbit Reticulocyte Lysate, RNasin,

Steady-Glo Luciferase Assay System, and the T7 Ribomax Tran-
scription Kit were purchased from Promega. G50 ProbeQuant
columns were obtained from GE Healthcare. XL-1 Blue E. coli
cells were purchased from Stratagene. Ni-NTA agarose resin was
purchased from Qiagen. BaL, CN54, and 96ZM651 gp120s were
obtained from the NIH AIDS Reference and Reagent Program,
catalog numbers 4961, 7749, and 10080 respectively. Wild-
type BaL gp120 and the BaL gp120 D368R and I420R mutants
used in Figure 4, panel A were a generous gift of R. Wyatt. PDI,
the Ala-Gln dipeptide, and Trypan Blue were purchased from
Sigma. SK-BR-3 and BT-474 cells were obtained from ATCC
(HTB-30 and HTB-20). MCF7 cells were a generous gift of the B.
Olenyuk laboratory. Cell culture media and reagents were pur-
chased from Hyclone. Plasmids encoding the VH and VL regions
of both Herceptin (60) and Omnitarg (52) separated by a
(GGGGS)3 linker were purchased from Bio Basic.

VEGF Expression and Refolding. A pQE30-VEGF expression
plasmid was transformed into XL-1 Blue E. coli by electropora-
tion according to the manufacturer’s instructions. An overnight
culture of these cells was used to inoculate a 1 L culture of 2xYT
media supplemented with 100 �g mL�1 ampicillin at an OD600

of 0.05. Protein expression was induced at an OD600 of 0.8 with
1 mM IPTG. Protein expression was allowed to proceed over-
night at 37 °C. Cells were pelleted by centrifugation and resus-
pended in lysis buffer (Tris-HCl at pH 	 8 containing 8 M Urea).
Resuspended cells were lysed by sonication. The lysate was
cleared by centrifugation at 18,000 rcf for 30 min. His-tagged
VEGF was purified under denaturing conditions using Ni-NTA
resin using the manufacturer’s instructions. Imidazole wash frac-
tions were collected, pooled, and stored at �20 °C until re-
quired. Collected fractions were thawed on ice, concentrated,
and FPLC purified using a preparative Hi-Load 16/60 Superdex
75 column (Pharmacia Biotech) equilibrated with denaturing
buffer (Tris-HCl at pH 	 8 containing 6 M Urea). Full length mon-
omeric VEGF was isolated, pooled, and stored at �20 °C until re-
quired for refolding.

The pooled fractions containing full-length monomeric VEGF
were diluted to 50 �g mL�1 with buffer containing 6 M urea,
0.1 M Na2HPO4, 10 mM Tris-HCl at pH 	 8.5, 1 mM EDTA, and
20 mM DTT. This solution was incubated for 3 h at RT to facili-
tate reduction. Reduced monomeric VEGF was then dialyzed
against 100 mM Tris-HCl at pH 	 8.5, 5 mM cysteine, 1 mM cys-
tine, 0.5 M Urea, and 2 mM EDTA overnight at RT.

To separate dimeric VEGF from monomeric and multimeric
species the refolded VEGF was concentrated and purified by
FPLC using a Superdex 75 column equilibrated with PBS. Frac-
tions containing refolded dimeric VEGF were collected, pooled,
concentrated, and reapplied to the Superdex 75 column. Re-
folded VEGF was characterized by SDS-PAGE under reducing and
nonreducing conditions to visualize the monomeric versus
dimeric form. Concentrations were obtained by UV absorbance.

Flt-1 Expression and Refolding. A pRSFDuet-Flt-1 expression
plasmid was transformed into XL-1 Blue E. coli by electropora-
tion according to the manufacturer’s instructions. An overnight

culture of these cells was used to inoculate a 1 L culture of
2xYT media supplemented with 35 �g mL�1 kanamycin at an
OD600 of 0.05. Protein expression was induced at an OD600 of
0.8 with 1 mM IPTG. Cells were pelleted by centrifugation and re-
suspended followed by lysis by sonication. The lysate was
cleared by centrifugation at 18,000 rcf for 30 min. His-tagged
Flt-1 was purified under denaturing conditions using Ni-NTA
resin according to the manufacturer’s instructions. Imidazole
wash fractions were collected, pooled, and stored at �20 °C un-
til required. Collected fractions were thawed on ice, concen-
trated and FPLC purified using a preparative Hi-Load 16/60 Su-
perdex 75 column (Pharmacia Biotech) equilibrated with
denaturing buffer (6 M urea, 10 mM Tris-HCl, 100 mM Na2HPO4,
pH 8.0). Flt-1 was refolded overnight at 4 °C in 2 L of refolding
buffer (0.3 M urea, 10 mM Tris-HCl, 100 mM Na2HPO4, 5 mM cys-
teine and 1 mM cystine) in a 3 kDa MWCO dialysis snake-skin
tubing (Pierce) at a final concentration of 50�100 �g mL�1. Af-
ter refolding, Flt-1 was subsequently purified in phosphate buff-
ered saline (pH 7.4) using an analytical SuperdexTM 75 column
(Pharmacia Biotech).

Flt-1 Luciferase Fusion mRNA Production. Open reading frames
encoding for domain 2 of the Flt-1 receptor were cloned into bac-
terial vectors containing either the N- or C-terminal portions of
firefly luciferase, residues 2�416 and 398�550, respectively
(32), separated by a flexible amino acid linker. These plasmid
sequences were confirmed by the University of Arizona DNA Se-
quencing Facility. These constructs were PCR amplified using a
5= primer encoding a T7 promoter and Kozak sequence and 3=
primer containing a stem loop. mRNA was generated using the
T7 Ribomax Transcription Kit and purified using a G50 Probe-
Quant column. Concentrations of each mRNA were determined
by UV absorbance.

VEGF-Flt-1 Sandwich Assay. Translations using Flexi-Rabbit Re-
ticulocyte Lysate were carried out according to the manufac-
ture’s procedure using 2 pmol of each mRNA encoding for the
Flt-1 fusions, 400 �M DTT, 70 mM KCl, 200 �M of each amino
acid, 66% Lysate in 25 �L. Reactions were incubated at 30 °C for
90 min after which 75 nM VEGF dimer or an equivalent volume
of PBS was added and incubated for 1 h at RT. Luminescence
was monitored on a Turner TD20e luminometer by mixing 10 �L
of translation with 40 �L of Steady-Glo Luciferase Assay Sys-
tem giving a final concentration of 15 nM VEGF dimer. Lumines-
cence was monitored 1 min after mixing with a 10 s integra-
tion. Reactions were performed in duplicate and averaged.

VEGF Titration. To determine the assay sensitivity, translations
using Flexi-Rabbit Reticulocyte Lysate were carried out accord-
ing to the manufacture’s procedure using 2 pmol of each mRNA
encoding for the Flt-1 fusions, 400 �M DTT, 70 mM KCl, 200 �M
of each amino acid, and 66% Lysate in a 25 �L reaction. Trans-
lations proceeded at 30 °C for 90 min, followed by addition of
varying concentrations of VEGF dimer or an equivalent volume of
PBS. After binding at RT for 1 h, 10 �L of the reaction was added
to 40 �L of Steady-Glo Luciferase Assay System, giving final
VEGF dimer concentrations of 15, 7.5, 3.8, 1.9, 0.9, or 0.5 nM
or no VEGF. Luminescence was monitored 1 min after mixing
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with a 10 s integration. Reactions were performed in duplicate
and averaged.

Flt-1 Titration. Translations using Flexi-Rabbit Reticulocyte Ly-
sate were carried out according to the manufacture’s procedure
using 2 pmol of each mRNA encoding for the Flt-1 fusions,
400 �M DTT, 70 mM KCl, 200 �M of each amino acid, and 66%
Lysate in a 25 �L reaction. Reactions were incubated at 30 °C
for 90 min after which 22.5 �L of the reaction was added to 75
nM VEGF dimer in the presence of varying concentrations of free
Flt-1. Binding was allowed to achieve equilibrium at RT for 1 h,
followed by addition of 10 �L of the reaction to 40 �L of Steady-
Glo Luciferase Assay System, resulting in final concentrations
of 15 nM VEGF dimer and 500, 250, 100, 50, 25, 12.5, 2.3, or
0.4 nM or no Flt-1. Luminescence was monitored 1 min after mix-
ing with a 10 s integration. Reactions were performed in dupli-
cate and averaged, followed by normalization to the sample con-
taining 15 nM VEGF and no Flt-1.

Production of mRNA Encoding for the CD4 and 17b Split-
Luciferase Fusions. Open reading frames encoding for residues
1�182 of CD4 and the VH and VL regions of 17b separated by a
(GGGGS)3 linker were cloned into vectors containing the N- and
C-terminal portions of luciferase respectively. These plasmid se-
quences were confirmed by the University of Arizona DNA Se-
quencing Facility. These constructs were PCR amplified using a
5= primer encoding a T7 promoter and Kozak sequence and 3=
primer containing a stem loop. mRNA was generated using the
T7 Ribomax Transcription Kit and purified using a G50 Probe-
Quant column. Concentrations of each mRNA were determined
by UV absorbance.

Effect of DTT and PDI on the gp120 Sandwich Assay. Transla-
tions using Flexi-Rabbit Reticulocyte Lysate were carried out ac-
cording to the manufacture’s procedure using 2 pmol of each of
the mRNAs encoding the CD4-NFluc and CFluc-17b fusions,
70 mM KCl, 20 �M of each amino acid, 66% Lysate, 0.5 �L RNa-
sin (resulting in 160 �M DTT during translation, from the RNa-
sin storage buffer) where indicated, 90 �g mL�1 PDI where indi-
cated, and either 100 nM BaL gp120 or an equivalent volume of
PBS in a 25 �L reaction. Reactions were incubated at 30 °C for
90 min after which luminescence was monitored on a Turner
TD20e luminometer by mixing 20 �L of translation with 80 �L
of Steady-Glo Luciferase Assay System giving a final concentra-
tion of 20 nM BaL gp120. Luminescence was monitored 1 min af-
ter mixing with a 10 s integration. Reactions were performed in
duplicate and averaged.

Specificity of the gp120 Sandwich Assay. Translations and lu-
ciferase detection were carried out as described above, using
90 �g mL�1 PDI and no RNasin, except that 25 nM of the indi-
cated gp120 was added during translation, giving a final con-
centration of 5 nM gp120.

Production of mRNA Encoding for the Herceptin and Omnitarg
Split-Luciferase Fusions. Open reading frames encoding for the
VH and VL regions of Omnitarg and Herceptin separated by a
(GGGGS)3 linker were cloned into vectors containing the N- and
C-terminal portions of luciferase respectively. These plasmid se-
quences were confirmed by the University of Arizona DNA Se-
quencing Facility. These constructs were PCR amplified using a
5= primer encoding a T7 promoter and Kozak sequence and 3=
primer containing a stem loop. mRNA was generated using the
T7 Ribomax Transcription Kit and purified using a G50 Probe-
Quant column. Concentrations of each mRNA were determined
by UV absorbance.

Expression, Purification, and Western Blot Analysis of the HER2
ECD. Lec1 cells stably expressing a human growth hormone-
histidine tagged-HER2 ECD protein (49) were grown in 95%

MEM (without nucleotides or L-Gln) and 5% FBS supplemented
with 100 nM methotrexate, 0.5 mg mL�1 G418, 584 mg L�1 Ala-
Gln, 100 units mL�1 penicillin, and 100 �g mL�1 streptomycin.

Cell cultures were allowed to grow for three days after which pro-
tein was purified from 50 mL of culture media using Ni-NTA af-
finity chromatography. Protein was eluted with 10 mM Tris-HCl at
pH 	 7.5 containing 50 mM NaCl and 500 mM imidazole. This
solution was used directly for the experiments described below.

Western blot analysis was performed using a rabbit anti-his-
tag polyclonal primary antibody (QED Biosciences, 18814) and
an IR dye conjugated antirabbit secondary goat antibody (Licor
Biosciences, IgG IRDye 800CW, 926-32211). A Licor Biosciences
Odyssey scanner was used for imaging. HER2 ECD concentra-
tion was estimated from SDS-PAGE analysis.

HER2 Sandwich Assay using Purified HER2 ECD. Translations
using Flexi-Rabbit Reticulocyte Lysate were carried out accord-
ing to the manufacture’s procedure using 2 pmol of each of the
mRNAs encoding the Omnitarg-NFluc and CFluc-Herceptin fu-
sions, 70 mM KCl, 20 �M of each amino acid, 66% Lysate, and
90 �g mL�1 PDI in a 25 �L reaction. Reactions were incubated at
30 °C for 90 min after which purified HER2 ECD or an equiva-
lent volume of storage buffer (10 mM Tris-HCl at pH 	 7.5,
50 mM NaCl, and 500 mM imidazole) was added to the transla-
tion. These solutions were allowed to equilibrate at RT for 30
min. Luminescence was monitored on a Turner TD20e luminom-
eter by mixing 20 �L of translation with 80 �L of Steady-Glo Lu-
ciferase Assay System. Readings were taken 1 min after mixing
with a 10 s integration. Reactions were performed in duplicate,
background subtracted (using samples containing no HER2
ECD), and averaged. HER2 ECD concentrations after rapid dilu-
tion are shown.

HER2 Sandwich Assay Using Human Breast Cancer Cells. SK-BR-
3, BT-474, and MCF7 cells were grown in 90% RPMI 1640 and
10% FBS supplemented with 100 units mL�1 penicillin, 100 �g
mL�1 streptomycin, and 0.1% fungizone. Cells were detached
using PBS containing 25 mM EDTA, washed, and resuspended
in PBS; after which they were counted by Trypan Blue exclusion.
Cells were diluted to 1.4 � 104 cells �L�1 prior to use in the
assay.

Translations using Flexi-Rabbit Reticulocyte Lysate were car-
ried out according to the manufacture’s procedure using 2 pmol
of each of the mRNAs encoding the Omnitarg-NFluc and CFluc-
Herceptin fusions, 70 mM KCl, 20 �M of each amino acid, and
66% Lysate per 25 �L reaction. Reactions were incubated at
30 °C for 90 min after which 5 �L of cells or an equivalent vol-
ume of PBS was added. These solutions were allowed to equili-
brate at RT for 40 min with gentle shaking. Luminescence was
monitored on a Turner 20/20n or TD20e luminometer by mixing
20 �L of translation with 80 �L of Steady-Glo Luciferase Assay
System. Luminescence was monitored 1 min after mixing with a
10 s integration. The luminescence readings are from assays
that were performed in duplicate on cells grown in separate
flasks, background subtracted (using samples containing no
cells), and averaged. The number of cells in the luminescence
assay is reported.
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